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ABSTRACT 
 

Consider a single server retrial queueing system with second optional service under Coxian phase type services in 

which customers arrive in a Poisson process with arrival rate λ. Let k be the number of phases in the service station. 

The server provides two types of services namely Regular Service and Second Optional Service. The regular service 

time follows an exponential distribution with parameter µj  for j
th

 phase  ( j = 1, 2, 3 , . . .  , k). The second optional 

service time follows an exponential distribution with parameter µ. The services in all phases are independent and only 

one customer at a time is in the service mechanism. Let qj ( j = 1,2,3,. . . , k-1) be the probability that the customer 

moves from j
th

 phase to (j+1)
th

 phase. If the server is free at the time of a primary call arrival, the arriving call begins 

to be served in Phase 1 immediately by the server. If the server is busy, then the arriving customer goes to orbit and 

becomes a source of repeated calls. We assume that the access from orbit to the service facility is governed by the 

classical retrial policy. This model is solved by using Direct Truncation Method. Numerical  studies  have been done 

for analysis of mean number of  customers in the orbit (MNCO),Truncation level (OCUT), Probabilities of server free  

and busy and  for various values of   λ, q1,q2,. . .  ,qk-1, µ1, µ2 , µ3, . . . , µk, μ, p, k and σ  and also various particular 

cases of  this model have been discussed. 

 

1. INTRODUCTION 
 

Queueing systems, in which arriving customers who find all servers and waiting positions 

(if any) occupied may retry for service after a period of time, are called Retrial queues. For detailed 

survey of retrial queues and bibliographical information see Artalejo [1, 2, 3], Artalejo J.R and A. 

Gomez-Corral [4], Falin [7], monograph by Falin and Templeton [8], Yang and Templeton [15]. 

Because of the complexity of the retrial queueing models, analytic results are generally difficult to 

obtain. There are a great number of numerical and approximations methods available. In this paper 

we restrict our attention to solutions by Direct Truncation method [5, 6, 10].  
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mailto:ayyappanpec@hotmail.com
mailto:gopsek28@yahoo.co.in


The Electronic Journal of Mathematics and Technology, Volume 6, Number 3, ISSN 1933-2823 
  

232 

 

 

Second optional service plays a vital role in retrial queueing systems. Kailash C. Madan [11] 

has studied an M/G/1 queue with second optional service using supplementary variable technique. 

The work of Madan was generalized by Medhi [12] who studied a single server Poisson input queue 

with a second optional channel.  Gaudham Choudhury [9] studied some aspects of M/G/1 queueing 

system with second optional service and derived the steady state queue size distribution at the 

stationary point of time for general second optional service. Wang [14] studied M/G/1 queue with 

second optional service and server breakdown. Ayyappan et al., [6] have studied second optional 

service for Retrial queueing system with priority services. Gopal sekar et al.,[10] have studied the 

behaviour of Retrial queueing system with second optional service under Erlang-k services. In this 

paper, we introduce the concept of second optional service for Coxian phase type service. 

 

 In day to day life, we face many queueing situations in which customers require the 

essential service and only some may require the additional service provided by the server. The 

following examples give us motivation to develop this model. 

 

 In a barber shop, everyone may need a hair-cut (essential service) but only a few of the 

customers may need a colouring of hair (optional service). 

 

 Students joining a Mathematics department of a university want to complete their post 

graduate program (essential service) but only some of them may join as Research Assistant 

(second optional service) soon after completing the postgraduate program. 

 

 All patients who come to meet a doctor for curing their disease (essential service) but only 

some of them require Medical certificate (optional service). 
 

2. MODEL DESCRIPTION  
 

Consider a single server retrial queueing system with second optional service under Coxian 

phase type services in which customers arrive in a Poisson process with arrival rate λ. These 

customers are identified as primary calls. Let k be the number of phases in the service station. The 

server provides two types of services namely Regular Service and Second Optional Service. The 

regular service time follows an exponential distribution with service rate μj for j
th

 phase ( j = 1, 2, 3, 

. . . , k) and the second optional service time follows an exponential distribution with parameter µ.  

We assume that the services in all phases are independent and only one customer at a time is in the 

service mechanism. Let qj ( j = 1,2,3,. . . , k-1) be the probability that the customer moves from j
th

 

phase to (j+1)
th

 phase.  If the server is free at the time of a primary call arrival, the arriving call 

begins to be served in phase 1 immediately by the server. The sequence of phases could be arranged 

one after the other in series formation, with the provision of termination after the completion of any 

phase; that is the customer may terminate from j
th  

phase with probability (1-qj)  and then opt for the 

optional service with probability p and leaves the system after completion of the second optional 

service, after which the next customer enters the first phase unless he  declines the optional service ( 

with probability (1-p) ) and leaves the system, after which the next customer enters the first phase. 

If the server is busy, then the arriving customer goes to orbit and becomes a source of repeated 

calls. This pool of sources of repeated calls may be viewed as a sort of queue. Every such source 

produces a Poisson process of repeated calls with intensity σ. If an incoming repeated call finds the 
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server free, it is served in the same manner and leaves the system after service, while the source 

which produced this repeated call disappears. Otherwise, the system state does not change.  

2.1     Retrial Policy 

We assume that the access from the orbit to the service facility follows an exponential 

distribution with rate nσ which may depend on the current number n, (n ≥ 0) the number of 

customers in the orbit. That is, the probability of repeated attempts during the interval (t, t +∆t), 

given that there are n customers in the orbit at time t is nσ ∆t. It is called the classical retrial policy. 

The input flow of primary calls, interval between repetitions and service times in phases are 

mutually independent.  
 

2.2     Description of Random Process  
 

Let  N(t) be  the random variable which represents the number of customers in orbit  at time  

t  and  S(t) be the random variable which represents the server status at time t. The random process 

is described as  

 X = { < N(t) , S(t) > / N(t) = 0, 1, 2, 3,. . . ; S(t) = 0, 1, 2, 3,. . . , k+1}   

 S(t) = 0 ;  the server being idle  

 S(t) = j  ;  the server being busy with the customer in the j
th

 phase.  

             S(t) = k+1 ; the server being busy with a customer who opted for optional service. 

 

The possible state space is  

 

              { (i , j) / i = 0,1,2,3,… ;  j = 0,1,2,3, . . . , k+1 } 

 

The infinitesimal generator matrix Q for this model is given below 

 
 
   
 
            Q =    
 
 

 

The matrices described in the Infinitesimal generator matrix Q can be obtained from the following 

infinitesimal transition rates of process X as follows 

          

q(0, j)(l, m)  =  λ 

 

if ( l , m)  = (0,1)     ; j = 0 

-λ if ( l , m)  = (0,0 )    ; j = 0 

qj µj if ( l , m)  = (0, j+1) ; 1≤  j ≤ k-1  

λ if ( l , m)  = (1, j)     ; 1≤  j ≤ k+1  

p(1-qj) µj if ( l , m)  = (0, k+1); 1≤  j ≤ k-1  

(1-p)(1-qj) µj if ( l , m)  = (0, 0)    ; 1≤  j ≤ k-1  

p µk if ( l , m)  = (0,k+1) ; j = k 

(1-p) µk if ( l , m)  = (0,0)     ; j = k 

A00 A0 O O O … 

A10 A11 A0 O O … 

O A21 A22 A0 O … 

O O A32 A33 A0 … 

… … … … … … 
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μ if ( l , m)  = (0,0)     ; j = k+1 

- (λ+µ) if ( l , m)  = (0, j)     ; j = k+1  

- (λ+µj) if ( l , m)  = (0, j)     ; 1≤  j ≤ k  

                  0      otherwise 

For  i =1, 2, 3. . .  

 

q(i, j)(l, m) = iσ if ( l , m)  = (i-1,1)  ; j = 0 

λ if ( l , m)  = (i,1)     ; j = 0 

-(λ+ iσ) if ( l , m)  = (i,0)     ; j = 0 

qj µj if ( l , m)  = (i, j+1) ; 1≤  j ≤ k-1  

λ if ( l , m)  = (i+1,j)  ; 1≤  j ≤ k+1 

p(1-qj) µj if ( l , m)  = (i,k+1) ; 1≤  j ≤ k-1  

(1-p) (1-qj) µj if ( l , m)  = (i,0)     ; 1≤  j ≤ k-1  

pµk if ( l , m)  = (i,k+1) ; j = k 

(1-p)µk if ( l , m)  = (i,0)     ; j = k 

μ if ( l , m)  = (i,0)     ; j = k+1 

- (λ+µ) if ( l , m)  = (i, j)     ; j = k+1  

- (λ+µj) if ( l , m)  = (i,j)      ; 1≤  j ≤ k  

                    0   otherwise 

 

If the capacity of the orbit is finite say i = M 

 

q(i, j)(l, m) = iσ if ( l , m)  = (i-1,1)  ; j = 0 

λ if ( l , m)  = (i,1)     ; j = 0 

-(λ+ iσ) if ( l , m)  = (i,0)     ; j = 0 

qj µj if ( l , m)  = (i, j+1) ; 1≤  j ≤ k-1  

p(1-qj) µj if ( l , m)  = (i,k+1) ; 1≤  j ≤ k-1  

(1-p)(1-qj) µj if ( l , m)  = (i,0)     ; 1≤  j ≤ k-1  

  pµk if ( l , m)  = (i,k+1) ; j = k 

  (1-p)µk if ( l , m)  = (i,0)     ; j = k 

μ if ( l , m)  = (i,0)     ; j = k+1 

-µ if ( l , m)  = (i, j)     ; j = k+1  

- µj if ( l , m)  = (i,j)      ; 1≤  j ≤ k  

                     0   otherwise 

 

3.  DESCRIPTION OF COMPUTATIONAL METHOD  

 

Retrial queueing models can be solved computationally by the following techniques.  
 

(a)  Direct Truncation Method 

(b)  Generalized Truncation Method 

            (c)   Truncation Method using Level Dependent Quasi Birth and Death   Process     

                    (LDQBD)   

            (d)   Matrix Geometric Approximation. 
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In this paper we only discuss the Direct Truncation Method for solving the above model since we 

can very comfortably find the orbit cut (M) by using computational method and beyond the orbit 

cut all probabilities will be zero.  

  

3.1 DIRECT TRUNCATION METHOD 

 

Let X be the steady-state probability vector of Q, partitioned as X = ( x(0), x(1), x(2), . . . ) 

and   X  satisfies 

XQ  =  0   and    Xe = 1                

(1) 

where   x(i) =   ( Pi0  ,  Pi1 , Pi2 , . . . , Pik+1  )  ;    i = 0, 1, 2, . . .  

 

The above system of equations (1) can be solved by means of truncating the system of 

equations for sufficiently large value of the number of customers in the orbit, say M. That is, the 

orbit size is restricted to M such that any arriving customer finding the orbit full is considered lost. 

The value of M can be chosen so that the loss probability is small. Due to the intrinsic nature of the 

system, the only choice available for studying M is through algorithmic methods. While a number 

of approaches are available for determining the cut-off point, M, the one that seems to perform well 

is to increase M until the largest individual change in the elements of X for successive values is less 

than ε a predetermined infinitesimal value. 

 

 If M denotes the cut-off point or Truncation level, then the steady state probability vector   

X
(M)

  is partitioned as X
(M)  

= (x(0) , x(1), x(2) , . . . , x(M)),  where X
(M)  

  satisfies  

 

X
(M)  

Q
(M)

  =  0  and  X
(M)  

e = 1              

(2)  

and  x(i) =   ( Pi0  ,  Pi1 , Pi2 , . . . ,  Pik+1  )  ;    i = 0, 1, 2, . . . , M. 

 

The above system of equations (2) is solved exploiting the special structure of the co-

efficient matrix. It is solved using Numerical methods. Since there is no clear cut choice for M, we 

may start the iterative process by taking, say M = 1 and increase it until the individual elements of 

X do not change significantly. That is, if M
*
 denotes the truncation point then  

 

|| x
M*

(i)  -  x
M*-1

(i)  ||∞  < ε   where ε is an infinitesimal quantity. 

 

4.  STABILITY CONDITION 

Theorem: The inequality 1 2 11 1 2

1 2 3

...
1k

k

q q qq q q p  

    


 
      

 
 is the necessary 

and sufficient condition for system to be stable. 

 

Proof: 

 

Let Q be an infinitesimal generator matrix for the queueing system (without retrial). 

The stationary probability vector X satisfies 
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                                     XQ = 0   and   Xe = 1                                                                      

(3) 

 

Let R be the rate matrix and satisfying the equation 

 

                                    A0+RA1+R
2 

A2  =0                                                             

(4) 

The system is stable if sp(R) <1.  According to Neuts [13], the Matrix R satisfies sp(R) <1 if and 

only if 

 

                                   ΠA0e <   ΠA2e                                                             

(5) 

 

where Π = (π1,…,πk+1 ) and satisfies 

 

                                   ΠA = 0 and Πe = 1                                                            

(6) 

 and 

                                  A = A0+A1+A2                                                                        

(7)  

                                  

 Here A0, A1 and A2 are square matrices of order k and   A0   =  λ I.   I is the corresponding  Identity 

matrix, 

 

 

 

  

  

 

 

A1   =                                

 

 

         

   

 

 

 

 

 

 

 

 

A2   =                                

(1-p)(1-q1)µ1 0 0 … 0 0 p(1-q1)µ1 

(1-p)(1-q2)µ2 0 0 … 0 0 p(1-q2)µ2 

(1-p)(1-q3)µ3 0 0 … 0 0 p(1-q3)µ3 

… … … … … … … 

(1-p)(1-qk-1)µk-1 0 0 … 0 0 p(1-qk-1)µk-1 

(1-p)µk 0 0 … 0 0 pµk 

μ 0 0 … 0 0 0 

 

-(λ+µ1) q1 µ1 0 … 0 0 0 

0 -(λ+µ2) q2 µ2 … 0 0 0 

0 0 -(λ+µ3) … 0 0 0 

… … … … … … . . . 

0 0 0 … -(λ+µk-1) qk-1 µk-1 0 

0 0 0 … 0 --(λ+µk) 0 

0 0 0 … 0 0 -(λ+μ) 
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By substituting  A0 ,  A1 ,  A2  in  equations (5), (6) and  (7) ,we get 

 

  1 2 11 1 2

1 2 3

...
1k

k

q q qq q q p  

    


 
      

 
                                         

The inequality 1 2 11 1 2

1 2 3

...
1k

k

q q qq q q p  

    


 
      

 
 is also a sufficient condition for the 

retrial queueing system to be stable.  Let Qn be the number of customers in the orbit after the 

departure of n
th

 customer from the service station. We first prove the embedded Markov chain {Qn, 

n ≥ 0} is ergodic if  1 2 11 1 2

1 2 3

...
1k

k

q q qq q q p  

    


 
      

 
.  {Qn, n ≥ 0} is irreducible and 

aperiodic. It remains to be proved that {Qn, n ≥ 0} is positive recurrent. 

 

According to the Foster criterion [8], the irreducible and aperiodic Markov chain {Qn, n ≥ 

0} is positive recurrent if   m   for all m and lim sup 0m
m




  , where    

            m    = E ( (Qn+1 - Qn) / Qn = m)   ;   m = 0, 1, 2, 3,… 

 

                    =  1 2 11 1 2

1 2 3

... k

k

q q qq q q p  

    


 
     

 

m

m



 

 
 

 
     

 

If    1 2 11 1 2

1 2 3

...
1k

k

q q qq q q p  

    


 
      

 
, then   m  for all m and lim sup 0m

m





      

Therefore the embedded Markov chain {Qn, n ≥ 0} is ergodic.  

 
 

5. SPECIAL CASES 
 

a. If σ → ∞, then this model becomes single server classical queueing system with second 

optional service under Coxian phase type services. 

b. If q1 = q2 = q3 = . . . = qk-1 = 1 and each µi = kµ then this model becomes Single server 

retrial queueing system with second optional service under Erlang-k services discussed 

by Gopal sekar et al.,[10]. 

c. If p → 0, then this model becomes single server Retrial queueing system with Coxian 

phase type services. 
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d. If q1 = q2 = q3 = . . .= qk-1 = 1, p → 0 and each µi = kµ then this model becomes Single 

server retrial queueing system with Erlang-k services discussed by Ayyappan et al.,[5]. 

 

6. SYSTEM PERFORMANCE MEASURES 
 

In this section some important performance measures along with formulas and their 

qualitative behaviour for this queueing model are studied. Numerical study has been dealt in very 

large scale to study these measures. Defining 

     P( n , 0)    =   Probability that there are n  customers in the orbit and  server is idle 

 

P( n , j)     =   Probability that there are n  customers in the orbit and  server is busy  with  

                      a customer in the j
th

 phase  ( j = 1,2,3, . . . ,k) 

P(n, k+1)  =   Probability that there are n  customers in the orbit and  server is busy  with  

                      a customer  who opt for optional service. 

 

We can find various probabilities for various values of  λ, q1,q2,. . . qk-1, µ1, µ2 , µ3, . . . µk, k, μ, p 

and σ from section 3  and  the following system measures can be studied with these probabilities. 

 

 

 

a. The probability mass function of server state 

Prob (the server is idle) = 
0

( ,0)
i

p i




  

Prob (the server is busy with customer in the j
th

 phase)  =  
0

( , )
i

p i j




  ; j = 1, 2,3,. . . , k 

Prob (the server is busy with customer who opted for optional service) =  
0

( , 1)
i

p i k




   

 

b. The probability mass function  of number of customers in the orbit 

 Prob ( no customers in the orbit) = 
1

0

(0, )
k

j

p j




  

 Prob ( i customers in the orbit)   = 
1

0

( , )
k

j

p i j




   

c. The mean number of customers in the orbit(MNCO) 

                        = 
1

0 0

( , )
k

i j

i p i j
 

 

 
 
 

    

d. The probability that the orbiting customer is blocked  

                 Blocking Probability = 
1

1 1

( , )
k

i j

p i j
 

 

  

e. The probability that an arriving customer enter into service immediately  
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                               =   
0

( ,0)
i

p i





 

 

7. NUMERICAL STUDY 
 

The values of parameters λ, q1, q2 ,. . . qk-1, µ1, µ2 , µ3, . . . µk, k, μ, p  and σ  are chosen so 

that they satisfy the stability condition discussed in section 4. The system performance measures of 

this model have been done and expressed in the form of tables which are shown below using the 

steady state probability vector X for various values of  λ, q1,q2,. . . qk-1, µ1, µ2 , µ3, . . . µk, k, p  and 

σ.   

 

For λ = 8,µ1 = 30, µ2 = 20, µ3 =15, µ4 = 30, µ5 = 25, q1 = 0.6, q2 = 0.8, q3 = 0.4, q4 = 0.2 ,  p = 0.8 , 

μ = 10 and  σ = 100 , the steady state probability vector is X = ( x[0] , x[1], x[2] , . . . , x[M] ) 

  

x(0)   =  [0.1280 0.0500 0.0321 0.0223 0.0035 0.0006 0.0007] 

x(1)   =  [0.0087 0.0339 0.0310 0.0293 0.0054 0.0011 0.0016] 

x(2)   =  [0.0041 0.0272 0.0263 0.0285 0.0056 0.0013 0.0021] 

x(3)   =  [0.0024 0.0229 0.0223 0.0254 0.0052 0.0013 0.0024] 

x(4)   =  [0.0016 0.0196 0.0190 0.0220 0.0046 0.0011 0.0023] 

x(5)   =  [0.0011 0.0168 0.0162 0.0189 0.0040 0.0010 0.0021] 

x(6)   =  [0.0008 0.0143 0.0139 0.0162 0.0034 0.0009 0.0019] 

x(7)   =  [0.0006 0.0122 0.0118 0.0139 0.0029 0.0007 0.0017] 

x(8)   =  [0.0004 0.0104 0.0101 0.0119 0.0025 0.0006 0.0014] 

x(9)   =  [0.0003 0.0089 0.0086 0.0101 0.0021 0.0005 0.0012] 

x(10) =  [0.0003 0.0076 0.0073 0.0086 0.0018 0.0005 0.0011] 

x(11) =  [0.0002 0.0065 0.0062 0.0073 0.0015 0.0004 0.0009] 

x(12) =  [0.0002 0.0055 0.0053 0.0062 0.0013 0.0003 0.0008] 

x(13) =  [0.0001 0.0047 0.0045 0.0053 0.0011 0.0003 0.0007] 

 

Similarly, we can find x (n) for n ≥ 14 and it is noticed that x(n) → 0 as n → ∞ . For the 

numerical parameters chosen above, x (n) → 0 for n ≥ 84 and the sum of the steady state 

probabilities becomes 0.99999999999. In the same manner, we can find steady state probability 

vector X for all values of λ, q1,q2,. . . qk-1, µ1, µ2 , µ3, . . . µk, k, μ, p and σ . By using these steady 

state probability vector , we can find the following system measures 

 

1. Probability that the server is idle = 0.149269 

2. Probability that the server is busy with a customer in phase 1 = 0.266667 

   Probability that the server is busy with a customer in phase 2 = 0.240000 

 Probability that the server is busy with a customer in phase 3 = 0.256000 

   Probability that the server is busy with a customer in phase 4 = 0.051200 

 Probability that the server is busy with a customer in phase 5 = 0.012288 

3. Probability that the server is busy with a regular service          = 0.826155 

4. probability that the server is busy with a customer who opt for optional service 

                                                                                                   = 0.024576 

5. Probability mass function of number of customers in the orbit               
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6. Mean number of customers in the orbit = 5.138255 

7. Probability that the orbiting customer is blocked = 0.741438 

Table 1 shows the impact of low arrival rate and retrial rate σ over Mean number of customers in 

the orbit and we infer the following 

 

 Mean number of customers in the orbit decreases as retrial rate σ increases. 

 Mean number of customers in the orbit increases as λ increases. 

 P0 = 0.7896, P1 = 0.2065 and P2 = 0.0038 are independent of retrial rate σ. 

 This model becomes a classical queueing model with second optional service under Coxian 

type services if σ is large 

 

Table  1 :  Low arrival rate against  Mean number of customers in the orbit for λ = 2   

                  µ1 = 30, µ2 = 20, µ3 =15, µ4 = 30, µ5 = 25, q1 = 0.6, q2 = 0.8, q3 = 0.4, μ = 10 

                  q4 = 0.2 , p = 0.5 and various values of σ 

 

σ OCUT MNCO 

10 8 0.1067 

20 8 0.0801 

30 8 0.0712 

40 8 0.0668 

50 8 0.0641 

60 8 0.0623 

70 8 0.0610 

80 8 0.0601 

90 8 0.0594 

100 8 0.0588 

200 8 0.0561 

300 8 0.0552 

400 8 0.0548 

500 8 0.0545 

600 8 0.0543 

700 8 0.0542 

No. of   

customers in 

the orbit 

 

Probability No. of 

customers 

in the orbit 

Probability No. of 

customers 

in the orbit 

Probability 

0 0.237292 7 0.043839 14 0.014175 

1 0.110948 8 0.037381 15 0.012041 

2 0.095089 9 0.031848 16 0.010226 

3 0.081834 10 0.027115 17 0.008682 

4 0.070214 11 0.023072 18 0.007369 

5 0.060103 12 0.019622 19 0.006254 

6 0.051363 13 0.016681 20 0.005306 
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800 8 0.0541 

900 8 0.0540 

1000 8 0.0540 

2000 8 0.0537 

3000 8 0.0536 

4000 8 0.0536 

5000 8 0.0535 

6000 8 0.0535 

7000 8 0.0535 

8000 8 0.0535 

9000 8 0.0535 

10000 8 0.0535 

 

MNCO: Mean number of customers in the orbit; P0: Probability that the server is idle 

P1: Probability that the server is busy with regular service; P2: Probability that the server is busy with optional 

service; σ: Retrial rate; OCUT: Truncation level 

Table 2 shows the impact of medium arrival rate and retrial rate σ over Mean number of customers 

in the orbit and we infer the following 

 

 Mean number of customers in the orbit decreases as retrial rate σ increases. 

 Mean number of customers in the orbit increases as λ increases. 

 P0 = 0.4741, P1 = 0.5163 and P2 = 0.0096 are independent of retrial rate σ. 

 This model becomes a classical queueing model with second optional service under Coxian 

type services if σ is large 

 

Table  2 : Medium arrival rate  against  Mean number of customers in the orbit λ = 5 ,  

                 µ1 = 30, µ2 = 20, µ3 =15, µ4 = 30, µ5 = 25, q1 = 0.6, q2 = 0.8, q3 = 0.4, μ = 10 

                 q4 = 0.2 , p = 0.5 and various values of σ 

 

σ OCUT MNCO 

10 22 1.1110 

20 21 0.8336 

30 21 0.7412 

40 20 0.6950 

50 20 0.6672 

60 20 0.6487 

70 20 0.6355 

80 20 0.6256 

90 20 0.6179 

100 20 0.6117 

200 20 0.5840 

300 20 0.5748 

400 20 0.5701 

500 20 0.5674 

600 20 0.5655 

700 20 0.5642 
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800 20 0.5632 

900 20 0.5624 

1000 20 0.5618 

2000 20 0.5590 

3000 20 0.5581 

4000 20 0.5577 

5000 20 0.5574 

6000 20 0.5572 

7000 20 0.5571 

8000 20 0.5570 

9000 20 0.5569 

10000 20 0.5568 

 

 

 

 

Table 3 shows the impact of high arrival rate λ and retrial rate σ over Mean number of customers in 

the orbit and we infer the following 

 

 Mean number of customers in the orbit decreases as retrial rate σ increases. 

 Mean number of customers in the orbit increases as λ increases. 

 P0 = 0.1585, P1 = 0.8262 and P2 = 0.0154 are independent of retrial rate σ. 

 This model becomes a classical queueing model with second optional service under Coxian 

type services if σ is large 

 

 

Table 3 : High arrival rate against Mean number of customers in the orbit λ = 8 ,        

                 µ1 = 30, µ2 = 20, µ3 =15,  µ4 = 30, µ5 = 25, q1 = 0.6, q2 = 0.8, q3 = 0.4,  

                 μ = 10, q4 = 0.2 , p = 0.5 and various values of σ 

 

σ OCUT MNCO 

10 90 8.5074 

20 84 6.3835 

30 81 5.6755 

40 80 5.3215 

50 80 5.1091 

60 79 4.9676 

70 79 4.8664 

80 78 4.7906 

90 78 4.7316 

100 78 4.6844 

200 77 4.4720 

300 77 4.4012 

400 77 4.3658 

500 77 4.3445 

600 77 4.3304 
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700 77 4.3203 

800 77 4.3127 

900 77 4.3068 

1000 77 4.3021 

2000 77 4.2808 

3000 77 4.2738 

4000 77 4.2702 

5000 77 4.2681 

6000 77 4.2667 

7000 77 4.2657 

8000 77 4.2649 

9000 77 4.2643 

10000 77 4.2638 

 

 

Table 4 shows the impact of p over Mean number of customers in the orbit and we infer the 

following 

 

 Mean number of customers in the orbit decreases as p decreases. 

 P1 = 0.6196  is independent of retrial rate σ. 

 This model becomes a Single server Retrial queueing model with Coxian type services if p 

→ 0. 

 

Table 4:  P against Mean number of customers in the orbit for λ = 6 , µ1 = 30, µ2 = 20, µ3=15, µ4 = 

30,   µ5 = 25, q1 = 0.6, q2 = 0.8, q3 = 0.4, μ = 10, q4 = 0.2 , p = 0.8  and  σ = 10 

 

p OCUT MNCO P0 P2 

0.80000 33 2.1438 0.3620 0.0184 

0.40000 31 2.0275 0.3712 0.0092 

0.20000 31 1.9715 0.3758 0.0046 

0.10000 30 1.9440 0.3781 0.0023 

0.05000 30 1.9304 0.3792 0.0012 

0.02500 30 1.9236 0.3798 0.0006 

0.01250 30 1.9203 0.3801 0.0003 

0.00625 30 1.9186 0.3802 0.0001 

0.00313 30 1.9177 0.3803 0.0001 

0.00156 30 1.9173 0.3803 0.0000 

0.00078 30 1.9171 0.3804 0.0000 

0.00039 30 1.9170 0.3804 0.0000 

0.00020 30 1.9169 0.3804 0.0000 

0.00010 30 1.9169 0.3804 0.0000 

0.00005 30 1.9169 0.3804 0.0000 

0.00002 30 1.9169 0.3804 0.0000 

0.00001 30 1.9169 0.3804 0.0000 

0.00001 30 1.9169 0.3804 0.0000 

0.00000 30 1.9169 0.3804 0.0000 
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0.00000 30 1.9169 0.3804 0.0000 

 

p : probability that the customer opts an optional service 

 

8. CONCLUSION 
 

The Numerical study shows the changes in the system due to impact of retrial rate. The 

mean number of customers in the orbit decreases as retrial rate increases and it increases as arrival 

rate increases. As p decreases, the mean number of customers in the orbit decreases and this model 

becomes Single server Retrial queueing system with Coxian phase type services. The various 

special cases have been discussed and which are particular cases of this research work. This 

research work will be extended further by introducing various vacation policies, negative arrival 

and unreliable server.    
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